1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
| def create_dataloaders(config): transform = transforms.Compose([transforms.ToTensor()]) ds_train = torchvision.datasets.MNIST(root="./mnist/",train=True,download=True,transform=transform) ds_val = torchvision.datasets.MNIST(root="./mnist/",train=False,download=True,transform=transform)
ds_train_sub = torch.utils.data.Subset(ds_train, indices=range(0, len(ds_train), 5)) dl_train = torch.utils.data.DataLoader(ds_train_sub, batch_size=config.batch_size, shuffle=True, num_workers=2,drop_last=True) dl_val = torch.utils.data.DataLoader(ds_val, batch_size=config.batch_size, shuffle=False, num_workers=2,drop_last=True) return dl_train,dl_val
def create_net(config): net = nn.Sequential() net.add_module("conv1",nn.Conv2d(in_channels=1,out_channels=config.hidden_layer_width,kernel_size = 3)) net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2)) net.add_module("conv2",nn.Conv2d(in_channels=config.hidden_layer_width, out_channels=config.hidden_layer_width,kernel_size = 5)) net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2)) net.add_module("dropout",nn.Dropout2d(p = config.dropout_p)) net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1))) net.add_module("flatten",nn.Flatten()) net.add_module("linear1",nn.Linear(config.hidden_layer_width,config.hidden_layer_width)) net.add_module("relu",nn.ReLU()) net.add_module("linear2",nn.Linear(config.hidden_layer_width,10)) net.to(device) return net
def train_epoch(model,dl_train,optimizer): model.train() for step, batch in enumerate(dl_train): features,labels = batch features,labels = features.to(device),labels.to(device)
preds = model(features) loss = nn.CrossEntropyLoss()(preds,labels) loss.backward()
optimizer.step() optimizer.zero_grad() return model
def eval_epoch(model,dl_val): model.eval() accurate = 0 num_elems = 0 for batch in dl_val: features,labels = batch features,labels = features.to(device),labels.to(device) with torch.no_grad(): preds = model(features) predictions = preds.argmax(dim=-1) accurate_preds = (predictions==labels) num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum()
val_acc = accurate.item() / num_elems return val_acc
def train(config = config): dl_train, dl_val = create_dataloaders(config) model = create_net(config); optimizer = torch.optim.__dict__[config.optim_type](params=model.parameters(), lr=config.lr) nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') wandb.init(project=config.project_name, config = config.__dict__, name = nowtime, save_code=True) model.run_id = wandb.run.id model.best_metric = -1.0 for epoch in range(1,config.epochs+1): model = train_epoch(model,dl_train,optimizer) val_acc = eval_epoch(model,dl_val) if val_acc>model.best_metric: model.best_metric = val_acc torch.save(model.state_dict(),config.ckpt_path) nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print(f"epoch【{epoch}】@{nowtime} --> val_acc= {100 * val_acc:.2f}%") wandb.log({'epoch':epoch, 'val_acc': val_acc, 'best_val_acc':model.best_metric}) wandb.finish() return model
|